Copied to
clipboard

G = C42.29C23order 128 = 27

29th non-split extension by C42 of C23 acting faithfully

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.29C23, C4.182- 1+4, C4.372+ 1+4, C8⋊D425C2, C4⋊C4.144D4, C87D4.8C2, D4⋊Q833C2, C4.Q1633C2, C2.36(D4○D8), C8.18D48C2, C4⋊C8.90C22, C22⋊C4.36D4, C2.36(Q8○D8), C23.97(C2×D4), D4.2D432C2, C4⋊C4.201C23, (C2×C8).177C23, (C2×C4).460C24, Q8.D432C2, (C2×D8).31C22, C4⋊Q8.131C22, C2.D8.52C22, (C4×D4).138C22, (C2×D4).200C23, C4⋊D4.54C22, (C2×Q16).32C22, (C4×Q8).135C22, (C2×Q8).188C23, C22⋊Q8.54C22, D4⋊C4.63C22, (C22×C8).158C22, Q8⋊C4.63C22, (C2×SD16).46C22, C4.4D4.47C22, C22.720(C22×D4), C42.6C2216C2, (C22×C4).1115C23, (C2×M4(2)).98C22, C42⋊C2.178C22, C22.36C2410C2, C2.79(C22.31C24), (C2×C4).584(C2×D4), SmallGroup(128,1994)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.29C23
C1C2C4C2×C4C42C4×D4C22.36C24 — C42.29C23
C1C2C2×C4 — C42.29C23
C1C22C42⋊C2 — C42.29C23
C1C2C2C2×C4 — C42.29C23

Generators and relations for C42.29C23
 G = < a,b,c,d,e | a4=b4=c2=e2=1, d2=b2, ab=ba, cac=a-1b2, dad-1=ab2, ae=ea, cbc=ebe=b-1, bd=db, dcd-1=a2b2c, ece=bc, ede=a2b2d >

Subgroups: 348 in 173 conjugacy classes, 84 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C4⋊C4, C2×C8, C2×C8, C2×C8, M4(2), D8, SD16, Q16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, D4⋊C4, Q8⋊C4, C4⋊C8, C2.D8, C2.D8, C42⋊C2, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C422C2, C4⋊Q8, C22×C8, C2×M4(2), C2×D8, C2×SD16, C2×Q16, C42.6C22, D4.2D4, Q8.D4, C87D4, C8.18D4, C8⋊D4, D4⋊Q8, C4.Q16, C22.36C24, C42.29C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C24, C22×D4, 2+ 1+4, 2- 1+4, C22.31C24, D4○D8, Q8○D8, C42.29C23

Character table of C42.29C23

 class 12A2B2C2D2E2F4A4B4C4D4E4F4G4H4I4J4K4L4M8A8B8C8D8E8F
 size 11114882244444888888444488
ρ111111111111111111111111111    trivial
ρ21111-1-1111-1-111-1-11-11-11-11-111-1    linear of order 2
ρ311111-1111111111-1-111-1-1-1-1-1-1-1    linear of order 2
ρ41111-11111-1-111-1-1-111-1-11-11-1-11    linear of order 2
ρ51111-1-1-111-1-111-111-1-1111-11-1-11    linear of order 2
ρ6111111-11111111-111-1-11-1-1-1-1-1-1    linear of order 2
ρ71111-11-111-1-111-11-11-11-1-11-111-1    linear of order 2
ρ811111-1-11111111-1-1-1-1-1-1111111    linear of order 2
ρ911111-1-1111-1-1-1-11-111-111111-1-1    linear of order 2
ρ101111-11-111-11-1-11-1-1-1111-11-11-11    linear of order 2
ρ11111111-1111-1-1-1-111-11-1-1-1-1-1-111    linear of order 2
ρ121111-1-1-111-11-1-11-11111-11-11-11-1    linear of order 2
ρ131111-11111-11-1-111-1-1-1-111-11-11-1    linear of order 2
ρ1411111-11111-1-1-1-1-1-11-111-1-1-1-111    linear of order 2
ρ151111-1-1111-11-1-11111-1-1-1-11-11-11    linear of order 2
ρ161111111111-1-1-1-1-11-1-11-11111-1-1    linear of order 2
ρ172222-200-2-22-22-22000000000000    orthogonal lifted from D4
ρ182222200-2-2-222-2-2000000000000    orthogonal lifted from D4
ρ192222-200-2-222-22-2000000000000    orthogonal lifted from D4
ρ202222200-2-2-2-2-222000000000000    orthogonal lifted from D4
ρ214-44-4000-4400000000000000000    orthogonal lifted from 2+ 1+4
ρ2244-4-400000000000000000220-2200    orthogonal lifted from D4○D8
ρ2344-4-400000000000000000-2202200    orthogonal lifted from D4○D8
ρ244-44-40004-400000000000000000    symplectic lifted from 2- 1+4, Schur index 2
ρ254-4-440000000000000000-22022000    symplectic lifted from Q8○D8, Schur index 2
ρ264-4-440000000000000000220-22000    symplectic lifted from Q8○D8, Schur index 2

Smallest permutation representation of C42.29C23
On 64 points
Generators in S64
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 28 17 22)(2 25 18 23)(3 26 19 24)(4 27 20 21)(5 12 15 62)(6 9 16 63)(7 10 13 64)(8 11 14 61)(29 35 37 44)(30 36 38 41)(31 33 39 42)(32 34 40 43)(45 60 53 50)(46 57 54 51)(47 58 55 52)(48 59 56 49)
(1 47)(2 54)(3 45)(4 56)(5 35)(6 43)(7 33)(8 41)(9 40)(10 31)(11 38)(12 29)(13 42)(14 36)(15 44)(16 34)(17 55)(18 46)(19 53)(20 48)(21 49)(22 58)(23 51)(24 60)(25 57)(26 50)(27 59)(28 52)(30 61)(32 63)(37 62)(39 64)
(1 37 17 29)(2 30 18 38)(3 39 19 31)(4 32 20 40)(5 60 15 50)(6 51 16 57)(7 58 13 52)(8 49 14 59)(9 46 63 54)(10 55 64 47)(11 48 61 56)(12 53 62 45)(21 43 27 34)(22 35 28 44)(23 41 25 36)(24 33 26 42)
(5 64)(6 61)(7 62)(8 63)(9 14)(10 15)(11 16)(12 13)(21 27)(22 28)(23 25)(24 26)(29 39)(30 40)(31 37)(32 38)(33 35)(34 36)(41 43)(42 44)(45 50)(46 51)(47 52)(48 49)(53 60)(54 57)(55 58)(56 59)

G:=sub<Sym(64)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,28,17,22)(2,25,18,23)(3,26,19,24)(4,27,20,21)(5,12,15,62)(6,9,16,63)(7,10,13,64)(8,11,14,61)(29,35,37,44)(30,36,38,41)(31,33,39,42)(32,34,40,43)(45,60,53,50)(46,57,54,51)(47,58,55,52)(48,59,56,49), (1,47)(2,54)(3,45)(4,56)(5,35)(6,43)(7,33)(8,41)(9,40)(10,31)(11,38)(12,29)(13,42)(14,36)(15,44)(16,34)(17,55)(18,46)(19,53)(20,48)(21,49)(22,58)(23,51)(24,60)(25,57)(26,50)(27,59)(28,52)(30,61)(32,63)(37,62)(39,64), (1,37,17,29)(2,30,18,38)(3,39,19,31)(4,32,20,40)(5,60,15,50)(6,51,16,57)(7,58,13,52)(8,49,14,59)(9,46,63,54)(10,55,64,47)(11,48,61,56)(12,53,62,45)(21,43,27,34)(22,35,28,44)(23,41,25,36)(24,33,26,42), (5,64)(6,61)(7,62)(8,63)(9,14)(10,15)(11,16)(12,13)(21,27)(22,28)(23,25)(24,26)(29,39)(30,40)(31,37)(32,38)(33,35)(34,36)(41,43)(42,44)(45,50)(46,51)(47,52)(48,49)(53,60)(54,57)(55,58)(56,59)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,28,17,22)(2,25,18,23)(3,26,19,24)(4,27,20,21)(5,12,15,62)(6,9,16,63)(7,10,13,64)(8,11,14,61)(29,35,37,44)(30,36,38,41)(31,33,39,42)(32,34,40,43)(45,60,53,50)(46,57,54,51)(47,58,55,52)(48,59,56,49), (1,47)(2,54)(3,45)(4,56)(5,35)(6,43)(7,33)(8,41)(9,40)(10,31)(11,38)(12,29)(13,42)(14,36)(15,44)(16,34)(17,55)(18,46)(19,53)(20,48)(21,49)(22,58)(23,51)(24,60)(25,57)(26,50)(27,59)(28,52)(30,61)(32,63)(37,62)(39,64), (1,37,17,29)(2,30,18,38)(3,39,19,31)(4,32,20,40)(5,60,15,50)(6,51,16,57)(7,58,13,52)(8,49,14,59)(9,46,63,54)(10,55,64,47)(11,48,61,56)(12,53,62,45)(21,43,27,34)(22,35,28,44)(23,41,25,36)(24,33,26,42), (5,64)(6,61)(7,62)(8,63)(9,14)(10,15)(11,16)(12,13)(21,27)(22,28)(23,25)(24,26)(29,39)(30,40)(31,37)(32,38)(33,35)(34,36)(41,43)(42,44)(45,50)(46,51)(47,52)(48,49)(53,60)(54,57)(55,58)(56,59) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,28,17,22),(2,25,18,23),(3,26,19,24),(4,27,20,21),(5,12,15,62),(6,9,16,63),(7,10,13,64),(8,11,14,61),(29,35,37,44),(30,36,38,41),(31,33,39,42),(32,34,40,43),(45,60,53,50),(46,57,54,51),(47,58,55,52),(48,59,56,49)], [(1,47),(2,54),(3,45),(4,56),(5,35),(6,43),(7,33),(8,41),(9,40),(10,31),(11,38),(12,29),(13,42),(14,36),(15,44),(16,34),(17,55),(18,46),(19,53),(20,48),(21,49),(22,58),(23,51),(24,60),(25,57),(26,50),(27,59),(28,52),(30,61),(32,63),(37,62),(39,64)], [(1,37,17,29),(2,30,18,38),(3,39,19,31),(4,32,20,40),(5,60,15,50),(6,51,16,57),(7,58,13,52),(8,49,14,59),(9,46,63,54),(10,55,64,47),(11,48,61,56),(12,53,62,45),(21,43,27,34),(22,35,28,44),(23,41,25,36),(24,33,26,42)], [(5,64),(6,61),(7,62),(8,63),(9,14),(10,15),(11,16),(12,13),(21,27),(22,28),(23,25),(24,26),(29,39),(30,40),(31,37),(32,38),(33,35),(34,36),(41,43),(42,44),(45,50),(46,51),(47,52),(48,49),(53,60),(54,57),(55,58),(56,59)]])

Matrix representation of C42.29C23 in GL8(𝔽17)

011500000
100150000
000160000
001600000
00000010
00000001
000016000
000001600
,
01000000
160000000
160010000
011600000
00000100
000016000
00000001
000000160
,
98890000
1616990000
124810000
412910000
000014300
00003300
000000143
00000033
,
74030000
13101400000
007130000
004100000
000000130
000000013
000013000
000001300
,
10000000
016000000
016100000
100160000
00001000
000001600
00000010
000000016

G:=sub<GL(8,GF(17))| [0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,15,0,0,16,0,0,0,0,0,15,16,0,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,16,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0],[0,16,16,0,0,0,0,0,1,0,0,1,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0],[9,16,12,4,0,0,0,0,8,16,4,12,0,0,0,0,8,9,8,9,0,0,0,0,9,9,1,1,0,0,0,0,0,0,0,0,14,3,0,0,0,0,0,0,3,3,0,0,0,0,0,0,0,0,14,3,0,0,0,0,0,0,3,3],[7,13,0,0,0,0,0,0,4,10,0,0,0,0,0,0,0,14,7,4,0,0,0,0,3,0,13,10,0,0,0,0,0,0,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0,0,0,13,0,0,0,0,0,0,0,0,13,0,0],[1,0,0,1,0,0,0,0,0,16,16,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,16] >;

C42.29C23 in GAP, Magma, Sage, TeX

C_4^2._{29}C_2^3
% in TeX

G:=Group("C4^2.29C2^3");
// GroupNames label

G:=SmallGroup(128,1994);
// by ID

G=gap.SmallGroup(128,1994);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,456,758,219,675,1018,304,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d,e|a^4=b^4=c^2=e^2=1,d^2=b^2,a*b=b*a,c*a*c=a^-1*b^2,d*a*d^-1=a*b^2,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,d*c*d^-1=a^2*b^2*c,e*c*e=b*c,e*d*e=a^2*b^2*d>;
// generators/relations

Export

Character table of C42.29C23 in TeX

׿
×
𝔽